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Strava Metro data for bicycle monitoring: a literature review

Kyuhyun Lee and Ipek Nese Sener

Texas A&M Transportation Institute, College Station, TX, USA

ABSTRACT

Monitoring bicycle trips is no longer limited to traditional sources,
such as travel surveys and counts. Strava, a popular fitness tracker,
continuously collects human movement trajectories, and its
commercial data service, Strava Metro, has enriched bicycle
research opportunities over the last five years. Accrued knowledge
from colleagues who have already utilised Strava Metro data can
be valuable for those seeking expanded monitoring options. To
convey such knowledge, this paper synthesises a data overview,
extensive literature review on how the data have been applied to
deal with drivers’ bicycle-related issues, and implications for future
work. The review results indicate that Strava Metro data have the
potential—although finite—to be used to identify various travel
patterns, estimate travel demand, analyse route choice, control for
exposure in crash models, and assess air pollution exposure.
However, several challenges, such as the under-representativeness
of the general population, bias towards and away from certain
groups, and lack of demographic and trip details at the individual
level, prevent researchers from depending entirely on the new
data source. Cross-use with other sources and validation of
reliability with official data could enhance the potentiality.
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Introduction

Monitoring active modes of travel (i.e. bicycling and walking) has largely relied on tra-

ditional sources such as travel surveys and traffic counts. With the penetration of

mobile devices (e.g. smartphones, wearable watches, tablets) and the big data revolution,

acquiring active travel information is no longer limited to traditional methods (Lee, Sener,

& Mullins, 2016; Lee & Sener, 2020). Among various fitness tracking apps running on global

positioning system (GPS)–enabled devices, Strava has continuously collected human

movement records since 2009 and launched its commercial data service, Strava Metro,

in 2014 (Strava Metro, 2019). Since then, the data have enriched bicycle research

opportunities.

Accrued knowledge from colleagues who have already utilised Strava Metro data can

provide valuable guidance, especially for cities and agencies seeking expanded data

options. This paper aims to be a resource document by reviewing how Strava Metro

data have been used so far in support of cycling transport planners and practitioners,

how usefulness varies by data characteristics and study questions, and which
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challenges should be considered to achieve better planning and decision-making

outcomes.

To identify relevant literature for this review, four scholarly search engines were

selected: Google Scholar, Web of Science, Transport Research International Documen-

tation, and Research Gate. Every post-2009 source that included the term “Strava” was

searched. If the resulting record had an abstract that seemed relevant to active travel,

researchers checked whether the study used Strava Metro data and the level of signifi-

cance. When a study had several versions of papers (e.g. a transportation agency’s techni-

cal reports), published papers or papers having greater significance were selected

representatively to avoid overlap. Second, solely health-oriented studies (e.g. examination

of heart rates) were beyond the scope of the current review. Third, the current review

included only peer-reviewed journal articles, conference proceedings, and technical

reports written in English (except for a study by Proulx and Pozdnukhov [2017] that has

seminal implications). The searching process resulted in 42 papers. Due to a paucity of lit-

erature on pedestrians, the current review focused on bicycling.

This paper starts with an overview of crowdsourced data and Strava Metro data. Next,

the current applications of Strava Metro data are extensively discussed, followed by impli-

cations for future work. The paper ends with concluding remarks.

Data overview

Crowdsourced data

While still being widely reliant on traditional monitoring methods, the active transpor-

tation field began to take advantage of human movement records that smart mobile

devices automatically and passively collect. According to the most recent study that

extensively reviewed the emerging data sources via mobile devices (crowdsourced

data) and their current status of applications in the active travel context (Lee &

Sener, 2020), the emerging data sources can be broken down into seven broad cat-

egories: mobile phone positioning (MPP); location-based service (LBS); WiFi/Bluetooth;

regional bicycle tracking system; fitness tracking app; bike-share programme; and

user-feedback inventory. Since their fundamental data collection mechanisms differ,

these data sources have different data attributes, potentials, challenges, and adoption

rates. Among the seven categories, from a perspective of bicycle monitoring, regional

bicycle tracking apps guarantee a generally higher level of data quality, accuracy,

and trip/traveller details than the others, but only if time and resources allow for devel-

oping the app, recruiting enough users, and handling heavy computational work for

massive GPS points. Otherwise, the trip information collected from fitness tracking

apps is perhaps an optimal option (but not all the apps offer user-friendly and

ready-made databases). Although bike-share programmes and user-feedback inventory

are not considered a part of mainstream monitoring methods, they provide valuable

insights into, for example, shared bike-use patterns and community needs detection,

such as fixing potholes. MPP, LBS, and WiFi/Bluetooth are comparably less feasible

for extensive application, mostly due to difficulties in detecting bicyclists from other

modes and coarse spatial/temporal sampling resolution (for more detailed information,

refer to Lee and Sener [2020]).
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As noted by Lee and Sener (2020), there are various vendors providing commercial data

service, but “their products have been mainly used for motorised trips or are in initial

stages of development” for pedestrian and bicycle monitoring. So far, fitness tracking

apps have had the most widespread practical applications for active travel. Among

these apps, Strava—through Strava Metro—has vigorously promoted more research

endeavours over the last five years, and accordingly, the current review provides a

timely analysis.1 The plausible reason for the popularity of Strava Metro-offering data is

its readiness and preparedness in a format that is useable for spatial and statistical analysis,

with a rich coverage in time and space yet relatively reasonable price. Likewise, globally

dispersed users have resulted in growing interest in use of the data around the world.

Strava metro data

Strava is a fitness tracking platform that supports physical activities by recording GPS tra-

jectories (X and Y coordinates of points passed and the time). Strava Metro cleans the col-

lected GPS trajectories and aggregates to three geometric units—street segments (edges),

intersections (nodes), and polygons of trip origin and destination (OD)—to sell them again

for public use (i.e. research purposes and transportation planning). Data products consist

of spatial files and attribute tables containing information on traveller/trip count and trip/

waiting time at the geometries (waiting times are only provided for nodes) for various time

frames (e.g. hour, year, weekday, and weekend) by generalised trip purposes (commuting

and non-commuting).

Probably the main feature of Strava that has inspired diverse transportation schemes is

that it can be—simply and conceptually—defined as a continuous counting system cover-

ing the whole region of interest. While the typical counting system is likely to be set at a

small number of sites or implemented during a short period, Strava monitoring is almost

gapless over both time and space as long as Strava users exist. However, the uncertainty of

the representativeness of the general population and innate sampling bias diminish data

reliability. Moreover, in the interest of users’ privacy, individual demographics and details

about discrete trips (i.e. each route from origin to destination) are not provided to third-

party data users. Instead, summarised demographic characteristics (e.g. traveller counts

by age group/gender) and trip statistics (e.g. average trip time/distance) are offered at

the contracted area level.

In general, a complex data-mining process is necessary to systematically convert col-

lected GPS points to a user-friendly format. Customers of Strava Metro can bypass such

efforts, but at the same time, already processed datasets bring limitations to the capability

of controlling potential errors and omissions. The processed data can be viewed in inter-

active maps (DataView) without special techniques, but to fully exploit the datasets for

advanced and in-depth analyses, geographic information system (GIS) software and

skills are necessary. Even with such skills, handling the big data may entail tedious and

time-consuming work because file structures and formats may not be very compatible

with desired methodologies and existing datasets.

Licence fees are subject to change based on the size of the requested area, the time

span of the data needed, and the level of granularity and features in the dataset (Strava

Metro, 2019). According to Ohlms, Dougald, and MacKnight (2018), the estimated cost

for Virginia was $300,000 for one year (2.5 million activities in 2016 by 110,000 users).
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The Oregon Department of Transportation paid $20,000 for one year of bicycle data (June

2013 through May 2014; Chen, Wang, Roll, Nordback, & Wang, 2020). Since budgets might

not support this level of expenditure, the cost of obtaining and utilising Strava Metro data

should be compared to other monitoring methods based on which research schemes are

of interest and how the new data source can support realising the desired scenarios, as

discussed in the following section.

Applications

This section synthesises how Strava Metro data have been applied in the existing bicycle

literature and proposes current suitability for the corresponding application and open

challenges to be considered.

Travel pattern identification

The most fundamental application promoted by the availability of Strava records is to

identify and characterise cycling patterns that are unlikely to have been observed

through traditional data sources. The insufficient temporal and spatial coverage of tra-

ditional monitoring has often hampered capturing a fuller picture of cycling patterns

across the network. Once shapefiles (segments, intersections, OD polygons) are joined

with attribute files, they can be used to visualise and illustrate bicycle trip patterns.

With fine granularity, it is possible to examine from an areawide overview to the direc-

tional bicycle flows at a small scale of facilities (e.g. street). For instance, Selala and

Musakwa (2016) depicted a year of cycling activity density for the Johannesburg region

of South Africa for the first time. Total trip volumes on segments for a certain period

(e.g. a year or a week) can show heavily used links overall across networks (Griffin &

Jiao, 2015b). When trip identification (i.e. commuting or non-commuting) is applied,

researchers can observe how recreational riding shows different patterns from commuting

(Lee & Sener, 2019). Seasonal and daytime variations can be monitored as well (Fan & Lin,

2019; Jestico, Nelson, & Winters, 2016). Beyond purely analysing original data, when inte-

grated with other layers of information, Strava-generated data can contribute to the

understanding of cycling behaviours. For example, by integrating bicycle trip volumes

with official geographical units (i.e. census block groups), researchers determined which

sociodemographic/built environment factors were associated with the different levels of

bicycle activity density (Griffin & Jiao, 2015b; Hochmair, Bardin, & Ahmouda, 2019). In

terms of going beyond identifying Strava bicycle characteristics or examining Strava-

oriented bicycle patterns, more targeted planning strategies can be achieved, as discussed

next.

Travel demand estimation

Bicycle volumes are rudimentary measure for understanding existing travel conditions and

predicting ridership in a range of planning scenarios. Since observing every rider is prac-

tically impossible, network-wide ridership often must be determined from modelled

volumes. Making accurate predictions is a shared challenge, which leads to continuous

investigation of more powerful variables to include in travel demand estimation. In this
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respect, Strava data may become a valuable input in modelling bicycle travel demand and

help improve the model accuracy, as concluded by the reviewed studies (Table 1).

Roll (2018) developed negative binomial models for average annual daily bicycle

(AADB) traffic in the Central Lane Metropolitan Planning Organization in Oregon.

Among four different combinations of variables (Strava rider counts, street and bicycle

facility classification, accessibility to amenities, network density), model specifications

including the Strava variable produced the highest pseudo R-squared (0.75 and 0.77) com-

pared to those without Strava (from 0.59–0.68). In a study by Dadashova and Griffin (2020)

that accounted for daily bicycle flows at count stations in Texas, Strava user counts had the

greatest impacts on daily bicycle counts. Jestico et al. (2016) predicted cycling volumes

across the entire network in Victoria, Canada, utilising Poisson regression outcomes,

which estimated daily cycling volumes by incorporating peak-period Strava bicycle

volume (across 7–9 am and 3–6 pm) and four other variables (slope, speed, on-street

parking, time of year). The overall average model error (with 100 times 90–10 cross-vali-

dation split) was 38%, and the authors concluded that Strava could bring added value

to modelling bicycle traffic flows.

Alongside efforts to estimate travel demand, some researchers have proposed a new

framework to mitigate sample bias in the fitness-app-generated data. Roy, Nelson, Fother-

ingham, and Winters (2019) examined geographical covariates significant for correcting

bias by applying a variable selection technique, including household income, distance

to residential areas/green spaces, and traffic speed. Then they used the Poisson regression

model to predict all bicyclists across street segments in Tempe, Arizona. When the predic-

tion accuracy was verified by observed counts at 60 locations, for 86% of segments, pre-

dicted AADB counts were correct to within a margin of ±100. Proulx and Pozdnukhov

(2017) laid out a novel approach fusing various datasets (manual/automated counts,

Strava Metro, bike-share programme usage, two regional travel demand model outcomes)

to predict network-wide bicycle flows in San Francisco, California. The data fusion

approach began with applying a criterion value with a weight of 1 to average hourly

cycle counts at 536 directional links. Then the weighting matrix for the other four datasets

against the weight of 1 was determined based upon distance between observations and

link similarity (e.g. bicycle facility similarity). Resting on the determined weighting matrix,

the authors estimated link-level bicycle flows and assessed model performance for all

possible combinations of four datasets. Predictive accuracy only improved significantly

when the Strava data were included.

Table 1. Application overview in travel demand estimation.

Reference Summary description

Dadashova and Griffin
(2020)

Estimated mixed-effects models with autocorrelated errors of daily bicycle volume at 34 count
stations.

Jestico et al. (2016) Predicted categorised daily cycling volumes (low, medium, high) across a network from
Poisson regression models that estimated daily cycling volumes at 18 manual count
locations.

Proulx and Pozdnukhov
(2017)

Predicted link-level bicycle flows across a network from geographically weighted data fusion
models of average hourly cycle volumes collected during the peak period (4–7 pm) at 536
directional links.

Roll (2018) Estimated negative binomial models of annual average bicycle travel demand at 52 count
locations.

Roy et al. (2019) Predicted bias-corrected AADB counts for all streets from Poisson regression models that
estimated AADB volumes at 60 manual count locations.
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Although the results of the reviewed studies demonstrate promising applications, it is

arguably unclear whether Strava data are feasible for regional travel forecasting models

because the current data structure does not offer complete tour information including

trip start/end and route taken at an individual level—a limitation not specific to travel

demand forecasting practice but likely to disrupt other applications.

Route choice analysis

Until GPS trackers are prevalent, understanding why people take certain routes over a set

of route choices has exclusively relied on stated preference surveys. Given that real-world

decisions may differ from stated choices, ground-truth pathways of Strava cyclists are

appealing to transportation system modellers. Certainly, real footprints of Strava can

help understand bicycle trip behaviours, but they are unlikely to be one size fits all to mod-

ellers. Several studies investigated route choices of Strava cyclists and variables related to

the cycle behaviours (see Table 2).

Sun, Du, Wang, and Zhuang (2017) explored how environmental characteristics

influenced hourly aggregated recreational bicycling on weekdays in 2015 for 119

streets in Glasgow, United Kingdom. Strava cyclists tended to favour streets with a short

length, low vehicle traffic flow, better connectivity, or surrounded by residential land

use. Orellana and Guerrero (2019) examined the effect of street network structure on vari-

ations in total cyclists, weekday cyclists, and weekday commuting activities between Sep-

tember 2014 and September 2015 in the city of Cuenca, Ecuador. Their results indicated

influential effects of roadway hierarchy, household density, living conditions index, land

use mixture, segregated bicycle paths, intersections, and slope on cyclist volumes

across the three dependent variables.

Two other independent studies estimated discrete choice models to measure the like-

lihood of each street segment being chosen by Strava users (Strava user counts on links

were split into five categories from low to high; LaMondia & Watkins, 2017; Lin & Fan,

2020). Strava users’ route choices were associated with roadway characteristics/household

income (in both studies); accessibility to shopping areas and restaurants (LaMondia &

Watkins, 2017); and slope, time of day, and bicycle facilities (Lin & Fan, 2020).

While Strava tracking records have been utilised to examine route preferences, techni-

cally they are not suitable to build path-based route choice models due to the way that

Strava Metro provides data products (other than sampling-related issues). Because

Table 2. Application overview in route choice analysis.

Reference Summary description

Huber and Lißner (2019) Proposed a method to derive a single route from Strava data.
LaMondia and Watkins
(2017)

Estimated ordinal logistic model to measure the likelihood of each street segment being
chosen by Strava users (458 cyclists).

Lin and Fan (2020) Estimated ordered probit model to measure the likelihood of each street segment (N =
237,673) being chosen by Strava users.

McArthur and Hong
(2019)

Proposed a method to compute the shortest commuting routes between trip beginnings and
trip ends from Strava data.

Orellana and Guerrero
(2019)

Estimated a negative binomial model to examine the effect of street network structure on
variations in cycling activity counts on street segments (N = 19,103).

Sun et al. (2017) Estimated mixed-effects model to examine associations between environmental characteristics
and the rate of recreational bicycle trips on streets (N = 119).
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aggregated forms do not allow identification of a single trip route, a set of alternative

choices for each trip generation-destination pair cannot be generated.

Some scholars have attempted to address this limitation using OD data provided by

Strava Metro. McArthur and Hong (2019) computed the shortest commuting routes

between trip beginnings and trip ends that cyclists would take to minimise trip distance.

While the study found the counterfactual shorted link flows, the individual trip route actu-

ally taken was still missing, which means failure to form a choice set. In another attempt,

Huber and Lißner (2019) suggested a new method to derive a single route and a route

alternative from Strava Metro data by assigning and matching bicycle volumes in trip

origin zone, destination zone, and passing-through zone to street segments that intersect

with the zones. This method proposed how to disaggregate the original Strava data (in

aggregate format) so that the derived route could be used for predicting a route choice

model, but far more intensive validation is needed because the size of the zones and

route search algorithms affect the robustness of the estimation results. In addition, even

if a chosen single route can be derived from the original dataset, studies that necessitate

personal information about a trip maker (e.g. Hood et al. [2011] and Dhakar and Srinivasan

[2014]) are unlikely to be feasible due to privacy protection.

Infrastructure evaluation

Cities continue to improve the cycling environment, but the scarcity of suitable data

sources hinders measuring the effectiveness of all efforts. Moreover, given that a

change in one location might generate ripple effects in broader areas, a rich dataset is

needed for thorough evaluation. Such issues might be managed with Strava to some

extent. Table 3 provides an overview of applications related to infrastructure evaluation.

Heesch and Langdon (2016) examined the usefulness of Strava-collected bicycle trips in

assessing the impact of a bikeway expansion in Queensland, Australia. Based on spatial

and numerical comparisons, they detected monthly changes in Strava cyclists on the

expanded bikeway and surrounding area over three months. They also, however,

argued that cross-reference with other sources (e.g. on-site counts) was needed due to

spatially differential Strava usage. Another study (Heesch, James, Washington, Zuniga, &

Burke, 2016) in the same country conducted a practical evaluation of a newly opened

bikeway in Brisbane by comparing monthly Strava counts over a year (sixth months

before/after the opening). The comparison provided evidence that some cyclists shifted

from the pre-existing unsafe route to the new safe bikeway. The study results also

Table 3. Application overview in infrastructure evaluation.

Reference Summary description

Heesch and Langdon
(2016)

Examined the usefulness of Strava-collected data in evaluating the impact of a bikeway
expansion based on visual and numerical comparisons.

Heesch et al. (2016) Evaluated a newly opened bikeway by comparing monthly Strava counts before and after the
opening over a year.

Boss et al. (2018) Analysed changes in network-wide ridership through local indicators of spatial autocorrelation
(local Moran’s I) from monthly aggregated Strava cycling counts.

Hong et al. (2019) Evaluated the effects of big infrastructure investments by developing a fixed-effects Poisson
panel regression model for four years of monthly Strava counts.

Hong et al. (2020) Investigated interactions between cycling infrastructure and adverse weather conditions by
developing a fixed-effects regression model for hourly Strava bicycle trips.
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showed that the new bikeway motivated people to switch transport modes to cycling, but

it was not appealing for women. These contextual findings, however, were obtained from

concurrently carried out field observations and intercept surveys, not from Strava.

The above level of infrastructure evaluation targeting a few locations has application

cases with traditional counting systems (e.g. automated sensors), which could be even

more accurate (Deenihan, Caulfield, & O’Dwyer, 2013; Skov-Petersen, Jacobsen, Vedel,

Thomas Alexander, & Rask, 2017). However, the greater the study dimension, the more

difficult empirical analysis may become. In some studies, Strava has shown potential for city-

wide explorations that are unlikely to be plausible with the traditional method. For instance,

Boss, Nelson, Winters, and Ferster (2018) analysed changes in network-wide ridership in

Ottawa-Gatineau from monthly aggregated Strava cycling counts per segment for a year.

In this study, Boss et al. discerned ridership changes with respect to the newly installed infra-

structure itself and around it, as well as the temporary closing of a route caused by the con-

struction project. Hong, McArthur, and Livingston (2019) appraised big infrastructure

investments partly prepared for the 2014 Commonwealth Game in Glasgow. For the analy-

sis, a fixed-effects Poisson panel regression model was developed from four years of

monthly Strava counts. It was found that among four new cycling routes, three had positive

effects on increasing the monthly total volume of cycling.

A fine temporal scale of Strava-generated data also enabled investigating interactions

between the benefits of cycling infrastructure and bad weather conditions in a city with a

high level of precipitation. Hong, McArthur, and Stewart (2020) estimated a fixed-effects

regression model using hourly bicycle trips between 6 am and 11 pm taken from Strava

in 2016 and found that safe cycling infrastructure (i.e. segregated lanes and shared off-

road lanes) was not effective in neutralising the adverse impact of rain in Glasgow,

Scotland.

The aforementioned studies exemplify how to utilise the fitness tracking records being

updated every day to evaluate the impacts of infrastructure involving longitudinal analysis,

not only at several sites but also in wide areas. However, in this research stream, the

analytical approach should be considered in terms of ways to control extraneous factors

such as seasonal variations, spatial autocorrelation, natural increments in Strava users,

and atypical events (e.g. cycle races).

Crash exposure control

Preventing crashes is a primary task for most transportation authorities, and systemising a

tool for crash analysis is a vital part of safety interventions. When identifying risk factors for

cycling-involved crashes, researchers must determine directly measured exposure to

attain proper safety implications, but doing so is a common challenge (Turner et al.,

2017). To date, substantial safety modelling efforts have used surrogate measures such

as population, employment, or bicycle mode share (e.g. Amoh-Gyimah, Saberi, & Sarvi,

2016; Cai, Lee, Eluru, & Abdel-Aty, 2016; Nashad, Yasmin, Eluru, Lee, & Abdel-Aty, 2016),

or counts taken from automatic sensors or human collectors have been directly used or

expanded for analysis scales (e.g. Guo, Osama, & Sayed, 2018; Osama & Sayed, 2017;

Prato, Kaplan, Rasmussen, & Hels, 2016). However, a growing number of studies are

demonstrating that Strava Metro data can be integrated with the approach to control

bicycle crash exposure, as shown in the Table 4.
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The methods to integrate Strava data (as bicycle exposure) into crash models are split

into two types: two-stage inclusion involving an additional estimation process or immedi-

ate inclusion. Based on the example of the two-stage inclusion method, Aldred, Goodman,

Gulliver, and Woodcock (2018) used systematically estimated cycling flow from Cynemon

(a cycling network model that estimates traffic flows across London, with Strava cycle data

used as an explanatory variable) to control for bicycle exposure when investigating injury

risk factors of cycling injuries in London in 2013–2014. Sanders, Frackelton, Gardner,

Schneider, and Hintze (2017) proposed abbreviated exposure estimating models that

can reduce data burden and be ready for practice by integrating Strava bicycle data.

Adding Strava data (annual activity cycle count) to bicycle exposure estimation models

of Poisson regression could improve explanatory power (pseudo R-squared from 0.57–

0.62) while diminishing the need to collect other datasets. The authors noted that the sim-

plified modelling process can support local practitioners having limited access to full-scale

exposure estimations.

The approach involving an additional estimation process is likely to be much more

reliable. However, probably due to resource constraints, most studies have chosen the

immediate inclusion method. Immediate inclusion studies can be further subdivided con-

tingent upon whether manipulation to moderate Strava’s shortcomings was included.

First, in the studies that did not employ manipulation, total bicycle volume for a year or

converted daily average was applied as the facility-specific exposure at the intersection

or street (Chen et al., 2020; Y. Wang et al., 2018). While handy in practice, this method

must assume Strava users are evenly distributed, keeping the same proportion to total

bicyclists across the facilities. However, the proportion is very likely to vary spatially,

which can affect the robustness of the direct facility-specific exposure measurement.

To mitigate the effects of spatially uneven distribution and problematic arbitrary

numbers, several studies aggregated and classified the original bicycle counts into three

categories: low, medium, or high. Raihan, Alluri, Wu, and Gan (2019) counted the total

segment bicycle trips within census block groups and stratified the values. Subsequently,

the intersections and segments (unit of analysis) were assigned to one of the three classes.

Similarly, Saha, Alluri, Gan, and Wanyang (2018) calculated bicycle miles travelled and

Table 4. Application overview in crash exposure control.

Reference Summary description

Aldred et al. (2018) Developed case-control crash occurrence models (multilevel binary logistic) by comparing injury
sites (N = 567) with control sites (N = 6,046); exposure was derived from the cycling flow
estimation model where Strava counts were an explanatory variable.

Chen et al. (2020) Developed crash frequency models (negative binomial) at intersections (N = 209); categorised Strava
bicycle counts as an exposure.

Raihan et al. (2019) Developed crash frequency models (zero-inflated negative binomial) at segments and intersections
(N = 397); categorised Strava bicycle volume as an exposure.

Saad et al. (2019) Developed crash frequency models (negative binomial) at intersections (N = 171); categorised
adjustment factor-applied Strava bicycle counts as an exposure.

Saha et al. (2018) Developed crash frequency models (conditional autoregressive) at the block group level (N =
11,355); categorised Strava bicycle miles travelled and bicycle trip intensity as an exposure.

Sanders et al.
(2017)

Proposed simplified exposure estimating models (Poisson) at intersections (N = 46); used Strava’s
annual activity counts on segments as an explanatory variable.

Sener et al. (2019) Developed crash frequency and severity models (negative binomial and binary logit) at the block
group level (N = 1,053); categorised Strava bicycle trip intensity as an exposure.

Y. Wang et al.,
(2018)

Developed crash occurrence models (binary logit) at segments (N = 188) and intersections (N = 184);
categorised Strava bicycle counts as an exposure.

TRANSPORT REVIEWS 35



bicycle trip intensity at the census block group level and then incorporated the measures

(as low, medium, or high) to bicycle crash models. Sener, Lee, Hudson, Martin, and Dai

(2019) also applied the categorised trip intensity measures to control for exposure

when estimating crash frequency/severity models. Still, this form of manipulation is

likely to violate another assumption—that is, Strava records are socio-demographically

randomly sampled and equivalently represent whole population groups.

Saad, Abdel-Aty, Lee, and Cai (2019) suggested two adjustment factors using official

data to overcome the sampling-related shortcomings. First, they created a population

adjustment factor that calibrates percentages of cyclists by age and gender based on

the cycle data of the National Household Travel Survey (NHTS). They also determined a

field data adjustment factor from actual observations that was then applied to estimating

more accurate bicycle trip volume. In crash frequency model specifications, when the two

adjustment factors were adopted, the model performance turned out to have better good-

ness of fit than without any adjustment factors.

Overall, Strava-generated exposure variables have shown statistical significance in con-

ventional crash models (e.g. Poisson, negative binomial, zero-inflated negative binomial,

binary logit models), thereby improving model performance. Although it cannot simply

be concluded that Strava can serve as accurate exposure, it obviously has the potential

to act as a surrogate or proxy solution in the safety task. To maximise that potential, it

is recommended to adjust the original Strava data with official data rather than use it

directly.

Air pollution exposure assessment

Adverse health impacts of cycling in a polluted atmospheric environment is another par-

ameter that a growing body of literature suggests considering when planning and oper-

ating a transport system. Without adequate data sources, analysing exposure to air

pollution is another difficult task. However, the following studies show that expanded

data options through Strava may facilitate consideration of air pollution exposure

(Table 5).

Sun and Mobasheri (2017) measured average instantaneous exposures to particulate

matter with an aerodynamic diameter below 2.5 μm (PM2.5) and 10 μm (PM10) for riders

at nodes and compared how the level of momentary exposure differs by discrete trip pur-

poses (commuting and recreation) in Glasgow, United Kingdom. The estimation results

suggested that recreational bicyclists are less likely to be exposed to air pollutants

because they tend to prefer the city outskirts. A similar study by Sun, Moshfeghi, and

Liu (2017) approximated the inhaled doses of air pollutant for all the cycling and

Table 5. Application overview in air pollution exposure assessment.

Reference Summary description

Lee and Sener (2019) Investigated potential exposure of bicyclists on roadways (N = 3,501) to traffic-related air
pollution: Strava bicycle counts were the dependent variable of spatial autocorrelation
regression models.

Sun and Mobasheri
(2017)

Estimated instantaneous air pollution exposure at nodes while cycling for commuting and non-
commuting (mathematic calculation and local Moran’s I).

Sun et al. (2017) Estimated average inhaled dose of air pollutant during a single cycling and walking trip
(mathematic calculation and local Moran’s I).
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walking trips recorded in 2015. The amount of inhaled air pollutant was estimated as a

product of PM2.5, exposure duration (combined trip time at nodes and moving in seg-

ments), and general ventilation rate while riding and walking. On average, the total

inhaled dose while moving in segments was greater than two times that at nodes for

both, whereas a single cyclist was likely to inhale four times the amount of PM2.5 that a

pedestrian breathed in. Another study by Lee and Sener (2019) estimated the potential

exposure of bicyclists on roadways to traffic-related air pollution across El Paso, Texas,

by developing spatial autocorrelation regression models. The authors indicated significant

associations between greater bicycle volume and higher levels of PM2.5 emissions, imply-

ing the need for appropriate guidance for healthy riding.

With the aid of Strava, researchers have been able to attain new insights into exposure

to air pollution of cyclists, but the evidence from the study results is less obvious than that

from empirical analyses that recruit participants and let them carry individual instruments

(e.g. Good et al., 2016; Matt et al., 2016). The Strava app may be used to recruit and collect

movement trajectories for empirical endeavours, such as to measure an individual’s direct

exposure, but observations from already collected/aggregated Strava Metro data are likely

to be limited to “probable exposure” to air pollution at the population level.

Implications for future work

The literature discussed in the previous section shows various application cases of Strava

Metro data and implies what should be considered when planning use of the new source

or initially framing a study based on the current state of practice. This section summarises

such implications according to six topics that can be instructive for transportation

communities.

Representativeness

Bicyclists do not always ride on dedicated bikeways, instead often pioneering their own

paths, which makes for complex movement traces across networks. In this sense, Strava

seems likely to be a mirror that reflects real footprints. However, a reasonable suspicion

that may arise is how well the data represent the general population. According to the

reviewed literature in this paper, Strava Metro data typically represent 1–5% of total

bicycle volume (Cesme, Dock, Westrom, Lee, & Barrios, 2017; Chen et al., 2020; Griffin &

Jiao, 2015a; Turner et al., 2019; Z. Wang et al., 2018). Several studies have also qualified

correlations between Strava samples and actual count data and found overall strong cor-

relations greater than 0.75 (see Table 6). For example, Roy et al. (2019) developed a linear

regression model between AADB counts at 44 locations and corresponding Strava bicycle

flow and found an R-squared value of 0.76 in Arizona. Conrow, Wentza, Nelson, and Pettit

(2018) obtained a higher R-squared value (0.79) by linearly correlating manual counts at

122 sites and Strava ridership volumes in the greater Sydney area. However, the magni-

tude of correlation may vary by local context (possibly including the number of obser-

vation sites). In a study by Fan and Lin (2019), correlation with manual counts at seven

locations was much lower, at 0.36.

While the overall high correlation implies that Strava riders could be a good proxima-

tion of cyclists, the level of correlation is likely to change according to which temporal and
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spatial window is adopted, even within the same sample set. For example, Hong et al.

(2019) linearly correlated the number of cyclists who passed counting sites (N = 25) for

two days in 2014 and the corresponding Strava bicycle counts in the same year. As the

level of aggregation interval increased from hourly to daily, the R-squared significantly

improved, from 0.67 to 0.82. Roy et al. (2019) compared Strava counts to official counts

at daily, monthly, and annual levels and obtained the highest R-squared (0.76) from the

annual comparison. Beyond a temporal correlation, Conrow et al. (2018) investigated

how Strava data spatially correspond to actual bicycle trips using local Moran’s

I. Although Strava data showed overall good spatial correspondence, they did not

match for all the locations, and certain areas showed a stronger spatial match, such as

in the central business district.

As scholars suggested, despite the uncertainty in representativeness, Strava bicycle

behaviour can be generalisable to the entire population (but depending on local

context). However, which temporal aggregation is applied and where the analysis site is

may affect the validity and acceptability of the analysis results, so adequate time and

spatial frame should be taken.

Table 6. Correlations between official counts and Strava counts.

Reference Official count Strava sample Correlation Study area

Conrow et al.
(2018)

Manual count collected at 122
locations between 7 and 9 am on
March 1, 2016

Bicycling rider volume in
month of March 2016

R = 0.79 The Greater
Sydney
area

Fan and Lin
(2019)

Manual counts at 7 locations Cycling trips from December
2016 to November 2017

Adjusted R
2 =

0.356
Charlotte,
North
Carolina

Haworth
(2016)

Mix of manual and video counts at
164 sites collected over a 4-week
period in April and May 2013

Strava data in 2013 Adjusted R
2 =

0.62
London,
United
Kingdom

Hochmair et al.
(2019)

Average number of cyclists per
weekday from video imaging at
32 sites based on 2-day periods
between October and December
2016

Average number of Strava
activity counts per day
between January and June
2016

R = 0.55 Miami-Dade
County,
Florida

Hong et al.
(2019)

Manual counts at 35 locations for 2
days in September 2014

Bicycle trips for the
corresponding times

R
2 = 0.67 (daily
correlation),
R
2 = 0.82

(hourly
correlation)

Glasgow,
United
Kingdom

Huber, Lißner,
and Francke
(2019)

Hourly traffic volume automatically
collected from January 2015 to
June 2016 and temporal manual
counts from May to June 2016

Bicycle trips between June
2015 and June 2016

R
2 = 0.754 (hourly
correlation)

Dresden,
Germany

Jestico et al.
(2016)

Manual counts of cyclists at 18
locations for 6 days in January, 8
days in May, 6 days in July, and
14 days in October 2016

Cyclist count in 2016 R
2 = 0.40 (7–9
am),
R
2 = 0.56 (3–6

pm),
R
2 = 0.58 (a.m.

and p.m.
combined)

Victoria,
Canada

Roy et al.
(2019)

AADB extrapolated from
automated 2-week period counts
at 44 locations in April, May,
October, and November in 2016

Street-level AADB for 2016 R
2 = 0.76 Maricopa

County,
Arizona

Sun et al.
(2017)

AADB volume at 119 streets
offered by the UK Department
for Transport

AADB in 2015 R = 0.83 Glasgow,
United
Kingdom
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Sample bias

Strava’s sampling is inherently not random, either for individuals or their activities. The

characteristics expected from the sampled population are that they own a smartphone

(or equivalent device), can operate it, and are motivated to track their activities, which

leads to lopsided demographic distribution. In terms of demographic features, as

almost every reviewed piece of literature indicated, data contributors are more likely to

be male (in general, more than three-fourths) and a certain age group between 25 and

44 (roughly half). Also, Strava policy that restricts app users to people aged 16 years or

over completely excludes younger members of society (Strava, 2018a). As for activity,

the app is intrinsically predisposed to being recreational rather than utilitarian, primarily

because Strava is a fitness tracking app. Overall, studies show that 20–40% of Strava

cycling is for commuting (though the Sun, Du, Wang, and Zhuang [2017] study reported

60%).

However, oversampling certain groups (e.g. economically active, tech savvy, and

younger) also appears in most crowdsourced data being collected through mobile

devices, not just Strava Metro data, a fact that has been broadly acknowledged by

other literature reviews of big data in transportation (Lee et al., 2016; Milne & Watling,

2019; Z. Wang et al., 2018). Also, some of the skewness may be in accordance with the

nature of general bicyclists. For instance, Sanders et al. (2017) found general bicyclists

in the study region were skewed towards male and 25- to 44-year-old riders, suggesting

“[bias] concern was not sufficient not to consider use of Strava.”

Nevertheless, this sample bias must be anticipated, and analysts must deliberate on

how this expected problem will influence the study results. Further, when decision-

making is involved, under-observed groups with no access to mobile devices or Strava,

such as minority communities and the elderly, must be deliberately considered.

Data fusion

While representativeness and sampling bias are undeniable handicaps of Strava app data,

they might be addressed to some extent by fusing multiple datasets. The most straightfor-

ward and feasible way is cross-referencing with traditional sources. For instance, Saad et al.

(2019) adjusted Strava bicycle flow with automatic counts, but it should be noted that

robustness of this combination is also subject to the number of counter stations. As in

the study by Heesch et al. (2016), intercept surveys can make a connection between

Strava opt-in users and general cyclists by asking purpose-oriented questions—for

example, whether the individual is a regular Strava cyclist. As discussed previously, nation-

wide official data such as the NHTS or American Community Survey provide another

source that can complement the lack of sociodemographic information—not directly or

at an individual scale but indirectly and at an aggregated level, such as census block

groups.

Beyond this simple level of cross-use of different datasets, the more sources that are

fused, the more comprehensive, reliable insights that can be achieved because a discrete

data source offers unique advantages by covering different types of travellers, trip pur-

poses, and spatial variations. For instance, bike-share systems are likely to be more favour-

ably used by visitors around tourist attraction sites, and fitness tracking app users are more
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likely to be a recreation-oriented population (Proulx & Pozdnukhov, 2017). In addition, site-

based datasets give information on trips typically passing network links or intersections in

numbers, whereas GPS records reveal a series of movement traces. As data fusion

methods, such as machine learning and data analytics, get more elaborate and advanced,

the limitations of Strava data (and other mobile-generated crowdsourced data) in cer-

tainty, accuracy, representativeness, and reliability may be gradually overcome. While

all-inclusive data fusion is appealing, the main challenges may lie in how to fit the discrete

datasets with their heterogeneous attributes. As Proulx and Pozdnukhov (2017) suggested,

for a successful data fusion, different datasets should be compatible and complementary

to each other in the following six dimensions:

. Population scope (full population or a subset).

. Trip aggregation (individual or aggregated).

. Temporal scale (temporal extent, time series, or event).

. Temporal resolution (fineness of slices of time).

. Spatial scale (site-based, traces, OD points, and OD zones).

. Demographics (descriptions of the trip and trip maker).

Potential errors

GPS point data collected via mobile devices have intrinsic errors that may not be removed

or corrected while being preprocessed. Strava Metro cleans propositioning uncertainty

and noise, but the likelihood of some flaws (e.g. spatial mismatching) remains. Although

end data users do not have the full ability to check and/or control such potential errors,

additional data cleaning efforts might be helpful. For instance, Conrow et al. (2018) indi-

cated that “some bi-directional streets were represented as two separated line feature seg-

ments,” requiring exclusion of duplicated segments. Strava Metro announced they have

improved trip alignment algorithms to reduce the double counting problems (Strava,

2018b), but the need to check for errors may remain. As indicated by LaMondia and

Watkins (2017), there may be abnormal numbers to be verified. For instance, a segment

might have only 10 riders, but an immediately neighbouring segment may have 100

riders without any trip generators (e.g. restaurants).

Lee and Sener (2019) revealed another possible noise that can stem from Strava users.

In their study, trips were reported for highways where bicyclists seldom ride, generating

speculation that people may have “forgotten to turn off the app even after reaching

their destination, and the app recorded trips in vehicles.” Turner et al. (2019) also noted

that “because Strava users must manually deactivate the app at the end of a ride, it is poss-

ible that a small number of automobiles (i.e. those that were higher speed) are recorded as

cycling or pedestrian activities, potentially increasing overall speed and distance averages

on recorded routes.” In this sense, unrealistically long trip times and distances might need

to be filtered in advance.

Spatial and temporal autocorrelation

Strava provides location-based data that are susceptible to spatial correlation. Ignoring

spatial dependence can lead to misleading analysis results in modelling approaches to
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estimate parameters related to travel behaviours. The reviewed studies improved model

estimation power by controlling for spatial effects and indicated that spatial interactions

between nearby events in Strava activities should be assessed (Boss et al., 2018; Hochmair

et al., 2019; Lee & Sener, 2019; Saha et al., 2018). In a similar vein, the common temporal

pattern of Strava cyclists across reviewed literature is there are two peaks a day (i.e. com-

muting time), more trips on weekdays, and reduced trips in adverse weather conditions

(extremely low or high temperatures and rainy days). If the explicit aim of a Strava data-

involved study is time-series examination (e.g. pre- and post-evaluation of bicycle infra-

structure), then temporal variations, seasonal effects (if the study region has months of

extreme weather), and natural increments or decrements in users should be considered

because interactions with extraneous factors may mask the real effects of variables of

interest.

Privacy protection and trade-offs

Strava data are obtained from passive and continuous monitoring and then handed over

to third parties, which poses a risk to privacy. To address this problem, Strava (2018a)

implements several privacy control management strategies. First, individuals are given

the option to not share their information with others and not include their records on

Strava Metro’s server. Second, consented records are released in an aggregated form in

which individual identities are disguised. Even with this privacy protection setting, a

potential risk remains for individuals and movement patterns to be identified in areas

that have few Strava users.

Due to such risk, as of July 2018, Strava no longer provides minute-by-minute data but

has instead started to provide hourly counts and aggregated counts in five-count buckets

(instead of absolute numbers); it also no longer shows routes with counts of fewer than

three users (Strava, 2018b). Although these settings do not require review by an insti-

tutional review board (Lee & Sener, 2019), they generate trade-offs between sample size

and data quality. Filtering out the information of those users who do not want to

donate their records, excluding routes that do not exceed three users, and binning

counts into five buckets all reduce sample size, which may seriously impact robust ana-

lyses at a fine scale. For instance, if 100 cyclists pass a street but only 2% of them use

the Strava app and agree to donate data, this street is shown as an absolute zero route

even though 100 actual cycling activities took place on the route. This omission will

likely result in many zero activities, which is more serious in the fine analytical unit (e.g.

links and hourly aggregation). Given that the level of temporal aggregation (e.g. yearly,

peak time) and the type of spatial aggregation (e.g. census block group or by infrastructure

type) may help avoid excessive zeros, it is important to look into the given dataset first and

then choose appropriate aggregation methods.

More critically, aggregating traveller/trip counts makes it unavoidable that important

details on individual travel activity will be lost, and anonymising data donors excludes

their demographic information and consequently blocks the opportunity to scale

sample bias. Accordingly, it is hardly possible to retain essential information from the

Strava Metro product such as discrete trip routes, trip purposes, and sociodemographic

specifications at the individual level, all of which are essential to understanding the par-

ameters behind travel behaviours and are conventionally collected through traditional

TRANSPORT REVIEWS 41



travel surveys. Since the limited information may not fit existing methods and could

potentially reduce insights, it is necessary for researchers to carefully check which infor-

mation of interest is available when framing research goals.

Concluding remarks

Strava is leading the big data revolution in the active transportation sphere, where a lack of

ample datasets has often constricted a vigorous study environment. The new source of

Strava Metro data, with its unique attributes and advantages, has spurred growing

research endeavours, thereby cultivating a favourable environment for active transpor-

tation professionals. As the volume of relevant literature has increased, the available scen-

arios and analytical approaches have diversified. At the same time, methods to understand

the data properties and the challenges faced when using the data have gradually accumu-

lated. The current study sought to synthesise and convey the accrued knowledge over the

last five years, with a focus on how Strava Metro data have been applied in the existing

literature and their implications for future work.

While there are still doubts about the use of Strava data, many studies demonstrated

acceptable or strong correlations with field-observed data. Beyond the correlation inves-

tigation, the comparative advantages expected from Strava are to visualise and illustrate

revealed spatiotemporal travel flows across the wide study region. In predicting travel

demand, Strava counts may play an important role to enhance model performance as

an explanatory variable. The impacts of infrastructure improvement could be assessed

by comparing before and after travel volumes, not only for a single location but also on

a citywide scale. Until now, the most vigorously applied subdomain was safety-related

work. When developing crash models, inclusion of accurate exposure is one of the key

qualifications to acquire robust results. As eight of the reviewed studies noted, crowd-

sourced bicycle data taken from Strava have the potential to estimate and control for

crash exposure. The fitness tracking records also provided new insight about the cross-

section between active transportation and air pollution at the population level.

While Strava Metro data have supplemented studies of methodologies established with

traditional data or further developed new approaches, there are limitations on the use of

the data as a full substitution to traditional monitoring systems. First, the Strava counting

system does not collect all counts. Namely, there is a discrepancy between Strava samples

and general populations, raising concerns about the under- and over-representativeness

of populations. In addition, unlike conventional travel surveys, this monitoring process

was not created to offer quality data to transportation planners and practitioners, which

means the data do not contain all the desired details, such as person-level user profiles

and individual full-route traces. Thus, research that requires such information has not

been attempted heretofore and may not even be feasible—even with great advances

in data-mining skills—due to the nature of Strava and privacy protection. However, con-

sidering that “current trends suggest that it is inevitable that automatically recorded,

digital data will come into mainstream use both for academic study and for the practical

planning of transport systems” (Milne &Watling, 2019), and that “no known dataset has full

resolution into the spatial and temporal dimensions of the entire population’s travel pat-

terns” (Proulx & Pozdnukhov, 2017), it might be a more rational choice to compensate for

the shortcomings rather than abandon the imperfect data.
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As such, cross-use of Strava data with multiple sources may have great potential for

expanding applications. Validation with official data is also helpful to justify data reliability.

While it is surely advantageous to have an official counting system in fusing and validating

data, various opportunities remain for cities and municipalities in the absence of such sup-

plementary validation datasets. For instance, simply locating study sites (Apasnore, Ismail,

& Kassim, 2017), selecting counting sites (Brum-Bastos, Ferster, Nelson, & Winters, 2019;

Duncan, 2017), or identifying overall bicycle patterns throughout a city (Selala &

Musakwa, 2016) does not necessarily require rigorous validation.

Although the current review originally intended to encompass pedestrian trips, few appli-

cations were found in the literature (only Sun, Moshfeghi, and Liu [2017] analysed walking

trips), possibly because of high uncertainty and unsure reliability. This phenomenon seems

to be created by the characteristics of walking, rather than exclusively by Strava. Walking is

much more divergent than other transport modes in terms of trip purpose, time, distance,

and real route taken, thus requiring a large enough sample size to draw significant impli-

cations, but the proportion of walking trips reported to the fitness tracking app is likely to

be very small. The challenges of pedestrian monitoring through Strava may not be

different from what traditional methodologies encounter. However, another big data provi-

der, StreetLight Data, recently started to offer bicycle and pedestrian analytics with

advanced metrics, which may demonstrate welcome progress to active travel planners.

Given that the big data revolution is still ongoing with technological improvement, the

knowledge gap related to non-motorised travel may gradually be filled.

Note

1. Another commercial vendor providing crowdsourced data products for active modes of travel

is Street Light Data (2019). It combines multiple sources collected from multi-app LBSs, fitness

tracking apps, counters, and traditional surveys, which is likely to improve data quality, but its

applications have lagged behind Strava Metro due to its recent launch in 2019.
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